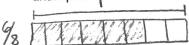
Unit 5 Review Sheet

Decompose Fractions & Mixed Numbers Using Addition Review

*when you decompose a number, you are breaking it into at least 2 parts

*write the decomposition as a sum of fractions


*the most basic way to decompose a fraction is into a sum of unit fractions

*Example: $\frac{6}{8} = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$

*there are multiple ways to decompose fractions & mixed numbers

*Example: $\frac{6}{8} = \frac{3}{8} + \frac{3}{8}$ or $\frac{6}{8} = \frac{2}{8} + \frac{4}{8}$ *you can use a tape diagram or number bond to prove your decomposition (remember to define the whole in your tape diagram!!)

*Example:

Converting between Improper Fractions & Mixed Numbers Review

*if you start with a mixed number, think about how many pieces of the denominator fit into the whole number, then add on the fractional part

*Example: $5\frac{6}{8}$... there are $\frac{40}{8}$ in 5 wholes ... $\frac{40}{8} + \frac{6}{8} = \frac{46}{8}$ OR $\frac{8}{8} + \frac{8}{8} + \frac{8}{8} + \frac{8}{8} + \frac{8}{8} + \frac{6}{8} = \frac{46}{8}$ *if you start with an improper fraction, think about how many groups of the denominator fit into the numerator (this will be your whole number); the leftover pieces that don't equally fit as a group will be the fractional part of your mixed number

*Example: $\frac{46}{8}$... there are 5 equal groups of eighths in 40 with 6 leftover pieces ... 5 $\frac{6}{8}$

*you can also think of the fractional line as division: $46 \div 8 = 5 \text{ r } 6$

Adding Fractions & Mixed Numbers Review

*if they are both fractions, only add the numerators - the denominator tells the unit & will stay the same

*when adding mixed numbers, there are several strategies you could use ...

*Place value strategy - remember to convert improper fractions as necessary

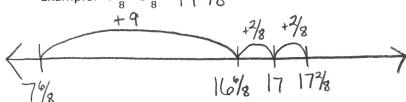
*Example:

$$7\frac{6}{8}$$

+
$$9\frac{4}{8}$$

$$16\frac{10}{8} \to 16 + 1\frac{2}{8} = 17\frac{2}{8}$$

*Convert both numbers to improper fractions; add; convert the answer back to a mixed number *Example:


$$7\frac{6}{8} \rightarrow \frac{68}{8}$$

$$+ 9\frac{4}{8} \rightarrow \frac{76}{8}$$

$$17\frac{2}{8} \leftarrow \frac{138}{8}$$

*Use a number line; think about landing on whole numbers

*Example:
$$7\frac{6}{8} + 9\frac{4}{8} = |7^2/8| + 9$$

Subtracting Fractions & Mixed Numbers Review

*if they are both fractions, only subtract the numerators - the denominator tells the unit & will stay the

*when subtracting mixed numbers, there are several strategies you could use ...

*Place value strategy – regroup a whole & add that form of one to your fraction "place value;" remember to convert improper fractions as necessary

*Example:
$$\frac{4}{5} \frac{2}{8} + \frac{8}{8} = \frac{10}{8}$$

$$\frac{2}{8} + \frac{8}{8} = \frac{10}{8}$$

$$\frac{2}{8} + \frac{6}{8} = \frac{10}{8}$$

*Convert both numbers to improper fractions; subtract; convert the answer back to a mixed number

*Example:

$$5\frac{2}{8} \rightarrow \frac{42}{8}$$

$$-2\frac{6}{8} \rightarrow \frac{22}{8}$$

$$-2\frac{4}{8} \leftarrow \frac{20}{8}$$

*Use a number line; think about landing on whole numbers

Start with the Adding Up Example: $5\frac{20}{8} - 2\frac{6}{8} = 2\frac{1}{8}$ +2 +3/8] radd these amounts to find your answer 5 5% — end at the larger number

*Counting Back Example: $5\frac{2}{8} - 2\frac{6}{8} = 2\frac{1}{8}$

-2 Frtake away the smaller number smaller number 5% + start with the larger number

Decompose Fractions Using Multiplication Review

*when you decompose a number, you are breaking it into 2 factors – a whole number and a fraction

*the most basic way to decompose a fraction is using a unit fraction

*Example:
$$\frac{20}{8} = \frac{1}{8} \times 20$$

*sometimes there are multiple ways to decompose a fraction

*Example:
$$\frac{20}{8} = \frac{2}{8} \times 10$$
 or $\frac{20}{8} = \frac{5}{8} \times 4$

Multiply Fractions & Mixed Numbers by Whole Numbers Review

*think of the whole number as the number of groups of a particular fraction

*Example:
$$4 \times \frac{3}{8}$$
 can be thought of as 4 groups of $\frac{3}{8}$

*you can think of multiplying a fraction by a whole number in two ways:

*multiply the whole number by the numerator, keep the denominator the same

*Example:
$$4 \times \frac{3}{8} = \frac{12}{8}$$

*write the whole number as a fraction with a denominator of one, multiply the numerators, multiply the denominators

*Example:
$$\frac{4}{1} \times \frac{3}{8} = \frac{12}{8}$$

*there are two strategies for multiplying a mixed number by a whole number:

*convert the mixed number into an improper fraction & multiply as above

*Example:
$$2 \times 3 \frac{3}{8} = 2 \times \frac{27}{8} = \frac{54}{8} \text{ or } 6 \frac{6}{8}$$

*decompose the mixed number and use the distributive property

*Example:
$$2 \times 3 \frac{3}{8} = (2 \times 3) + (2 \times \frac{3}{8}) = 6 + \frac{6}{8} = 6 \frac{6}{8}$$

Creating Line Plots Review

*look at your data set to determine which whole numbers will begin & end your number line

*after writing the whole numbers on your number line, partition each whole the same way (find a common denominator in your data set)

*plot each number on the number line using an "X"

*give your line plot a title that describes the data & a label that gives the unit of measurement for the numbers