Unit 4 Review Sheet

Equivalent Fractions Review

- * to generate an equivalent fraction, multiply or divide the fraction by a form of 1
 - *multiplying or dividing by 1 doesn't change the value of the fraction
 - *forms of 1 are 2/2, 3/3, 4/4, etc
- *there are a number of ways to prove that two fractions are equivalent:
 - *multiply/divide by forms of 1
 - *draw a model, including an area model
 - *this area model shows $\frac{1}{4} \times \frac{3}{3} = \frac{3}{12}$

Comparing Fractions Review

- *use the symbols >, <, and = to show the relationship between two fractions
- *there are many strategies that can be used to compare fractions choose the one that will most efficiently get you to an accurate answer
 - *if the numerators are the same, compare the denominators (the smaller number means larger pieces & is the larger fraction)
 - *if the denominators are the same, compare the numerators (the larger number means more pieces & is the larger fraction)
 - *use a benchmark fraction
 - *1/2 can be used if one fraction is clearly smaller than ½ and one fraction is clearly larger than ½
 - *1 can be used if the fractions are the same number of pieces away from 1 ... think about which pieces are smaller, that's the larger fraction
 - *create a common numerator or denominator, then use the reasoning above for when the numerators or denominators are the same
 - *find a common multiple to use, then use equivalent fractions

Example: $\frac{3}{4}$ $\frac{2}{3}$ common numerators: $\frac{3}{4} \times \frac{2}{2} = \frac{6}{8}$

common numerators: $\frac{3}{4} \times \frac{3}{3} = \frac{9}{12}$ $\frac{2}{3} \times \frac{4}{4} = \frac{8}{12}$